Domain and Range of Basic Inverse Trigonometric Functions
If n is a p...
Question
If n is a positive integer, then prove that |Im(zn)|≤n|Im(z)||z|n−1.
Open in App
Solution
Let z=r.eiθ Hence zn=rn.einθ Hence Im(zn)=rn.sin(nθ) Now, n|Im(z)|.|zn−1|=n|rsinθ|.|zn|.1|z| =nrn|sinθ| Now n|sinθ|≥|sin(nθ)| for n≥1 Hence the above inequality is true.