If n is an integer greater than 1, show that a−nC1(a−1)+nC2(a−2)−.....+(−1)n(a−n)=0
Open in App
Solution
a−C1(a−1)+C2(a−2)+C3(a−3)+..........+(−1)n(a−n)=0 Now C0=1,Cn=1 Collect terms of a in one bracket. and without a in the other. L.H.S=a[C0−C1+C2−C3+.......(−1)n.Cn]+[C1−2C2+3C3+.......(−1)n−1nCn] ∵−(−1)n=(−1)(−1)(−1)n−1=(−1)n−1 L.H.S=a0+0=0