If n is an odd integer greater than or equal to 1 then the value of n3−(n−1)3+(n−2)3−...+(−1)n−1.13 is
A
(n+1)2.(2n−1)4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(n−1)2.(2n−1)4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(n+1)2.(2n+1)4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(n+1)2.(2n−1)4 The sequence can be written as : Sn=n3+(n−2)3+(n−4)3+......+13−[(n−1)3+(n−3)3+(n−5)3+....+23]=n3+(n−2)3+(n−4)3+......+13+[(n−1)3+(n−3)3+(n−5)3+....+23]−2[(n−1)3+(n−3)3+(n−5)3+....+23]=∑nr=1r3−2×23[13+23+33+............+(n−12)3] we have taken 8 common from the 2nd part of the sequence. =∑nr=1r3−16∑n−121r3=[n(n+1)22]−16⎡⎢
⎢
⎢
⎢
⎢⎣n−12(n−12+1)22⎤⎥
⎥
⎥
⎥
⎥⎦=n(n+1)22−16[(n−1)(n+1)82]=(n+1)24[n2−(n−1)2]=(n+1)2(2n−1)4