wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If n is any positive integer, show that the integral part of (3+7)n is an odd number.

Open in App
Solution

suppose for (3+7)n
I = integral part
f = fractional part

(3+7)n=I+f

0<f<1

37<1

(37)n=f a proper fraction

adding both equation

(3+7)n+(37)n=I+f+f

[C03n.(7)0+C13n1.(7)1+.......Cn30.(7)n]+[C03n.(7)0C13n1.(7)1+.......Cn30.(7)n]=I+f+f

f+f=1

let us assume n = even

2.[C03n.(7)0+C13n2.(7)2+.......Cn30.(7)n]=I+1


2.[C03n.(7)0+C13n2.(7)2+.......Cn30.(7)n]=even integer

I=even1=odd integer


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inequalities of Definite Integrals
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon