If n is any positive integer, write the value of i4n+1−i4n−12
i4n+1−i4n−12=i4n×i1−i4n×i−12=(i4)n×i−(i4)n×1i2=1×i−11i×i×i2=i−ii22=i+i2 (∵ i2=−1)=2i2=i