If n is be a positive integer, then (1+i)n+(1+i)n=2kcosnπ4, where k is equald to
(cosθ+isinθ)2=cosnθ+isin4θ
Solution : (1+i)n+(1−i)n=2kcosnπ4∣
L.H.S.=(1+i)n+(1−i)n (√2)n((1√2+i√2)n+(1√2−i√2)n)
(√2)n(cosnπ4+isinnπ4+cosnπ4−isinnπ4)
=2n2+1cosnπ4
⇒ k=n2+1