Let (7+4√3)n=I+f ..... (i)
where I & f are its integral and fractional parts respectively.
It means 0<f<1
Now, 0<7−4√3<1
0<(7−4√3)n<1
Let (7−4√3)n=f′ ...... (ii)
⇒ 0<f′<1
Adding (i) and (ii)
I+f+f′=(7+4√3)n+(7−4√3)n
=2[nC07n+nC27n−2(4√3)2+...]
I+f+f′= even integer ⇒ (f+f′ must be an integer)
0<f+f′<2⇒f+f′=1
⇒I+1= even integer
Therefore I is an odd integer.