If n & k be positive integers such that n≥k(k+1)2. The number of integral solutions (x1,x2,...,xk),x1≥1,x2≥2,...,xk≥k, satisfying x1+x2+...+xk=n, is
A
mCk−1, where m=(12)(2n−k2+k−2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
mCk, where m=(12)(2n−k2+k−2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
mCk−1, where m=(12)(2n−k2+2k−2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
mCk, where m=(12)(2n−k2+2k−2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is DmCk−1, where m=(12)(2n−k2+k−2) Given, x1≥1,x2≥2,x3≥3,.........xk≥k let, x1=y1+1,x2=y2+2,x3=y3+3,..............xk=yk+k, where y1,y2,y3,......yk are non-negative integers but, x1+x2+........xk=n ⇒y1+1+y2+2+y3+3+................yk+k=n ⇒y1+y2+y3+................yk+k(k+1)2=n ⇒y1+y2+y3+................yk=n−k(k+1)2 ∴ number of solutions=(n−k(k+1)2+k−1)Ck−1 let m=n−k(k+1)2+k−1 ⇒m=(12)(2n−k2+k−2) Hence, option A is correct.