2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Arithmetic Progression
If N=n!n ∈ ...
Question
If
N
=
n
!
(
n
∈
N
,
n
>
2
)
, then find
l
i
m
N
→
∞
[
(
l
o
g
2
N
)
−
1
+
(
l
o
g
3
N
)
−
1
+
…
+
(
l
o
g
n
N
)
−
1
]
Open in App
Solution
l
i
m
N
→
∞
[
log
N
2
+
log
N
3
+
⋯
+
log
N
n
]
[
∵
(
log
a
b
)
−
1
=
l
o
g
b
a
]
=
log
N
→
∞
log
N
(
2.3
…
n
)
=
l
i
m
N
→
∞
log
N
(
n
!
)
=
l
i
m
N
→
∞
log
N
N
=
l
i
m
N
→
∞
1
=
1
[
∵
n
!
=
N
]
.
.
.
.
g
i
v
e
n
Suggest Corrections
0
Similar questions
Q.
If
N
=
n
!
(
n
∈
N
,
n
>
2
)
then
(
(
log
2
N
)
−
1
+
(
log
3
N
)
−
1
+
.
.
.
.
.
+
(
log
n
N
)
−
1
]
is
Q.
If
N
=
n
!
(
n
∈
N
,
n
>
2
)
then
(
(
log
2
N
)
−
1
+
(
log
3
N
)
−
1
+
.
.
.
.
.
+
(
log
n
N
)
−
1
]
is