If nCx= nCy and n≠y then prove that x+y=n.
We have
nCx= nCy= nCx−y [∵ nCr= nCx−r]
⇒ x=y or x=n−y
⇒ x=n−y [∵ x≠y (given)]
⇒ x+y=n.
Hence, nCx= nCy and x≠y then x+y=n.
If nCx=nCy then