The correct option is A →r=x→a+→a×→b|→a|2
As →a⊥→b
∴→a⋅→b=0....(∗)
Again →a,→b,→a×→b are non coplanar
∴→r=x→a+y→b+z(→a×→b)....(1)
for some x,y,zϵR
∴→b=→r×→a
⇒→b=(x→a+y→b+z(→a×→b))×→a
=y(→b×→a)+z((→a×→b)×→a)
=y(→b×→a)−z(→a×(→a×→b))
=y(→b×→a)−z[(→a⋅→b)→a−(→a⋅→a)→b]
⇒→b=y(→b×→a)+z(→a⋅→a)→b ....... using (∗)
⇒y=0,z=1→a⋅→a=1|→a|2
∴ From (1) we get →r=x→a+1|→a|2(→a×→b)
Hence, option A is correct.