If nPr=5040(n−1Cr−1+n−1Cr),then r =
6
7
5
None
nPr=5040(n−1Cr−1+n−1Cr)=5040nCr
⇒ n!(n−r)!=5040n!(n−r)r!⇒r!=5040
⇒ r = 7.
If nPr=336, nCr=56, then find n and r and hence find n−1Cr−1