wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If number of integral coordinates (x,y) which lie inside to the circle x2+y2=25 is n, then [n9] is
( [.] represents the greatest integer function. )

Open in App
Solution

x,yZ and x2+y2<25 for point to be internal.
If x=0,y2<25
So, possible integral coordinates are
{(0,0),(0,±1),,(0,±4)}=9

If x=±1,x2+y2<24
So, possible integral coordinates are
{(±1,0),(±1,±1),(±1,±2),(±1,±3),(±1,±4)}=18

If x=±2,y2<21
So, possible integral coordinates are
{(±2,0),(±2,±1),(±2,±2),(±2,±3),(±2,±4)}=18

If x=±3,y2<16
So, possible integral coordinates are
{(±3,0),(±3,±1),(±3,±2),(±3,±3)}=14

If x=±4,y2<9
So, possible integral coordinates are
{(±4,0),(±4,±1),(±4,±2)}=10

n=9+18+18+14+10=69
[n9]=7

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon