If ω is a complex cube root of unity, then value of expression cos[{(1−w)(1−w)2+....+(10−w)(10−w)2}π900]
We have(k−w)(k−w)2=k2−k(w+w2)+w3
=k2−k(−1)+1=k2+k+1
⇒∑k=1(k−w)(k−w)2=∑10k=1(k2+k+1)
=10×11×216+10×112+10=385+55+10=450
Thus, cos[{∑10k=1(k−w)(k−w)2}π900]=cos(450900π)=0.