If O is a point inside a triangle ABC, which of the following is true ?
(AO + BO + CO) < (AB + BC + CA)
AO + BO + CO > (AB + BC + CA)
AO + BO + CO = AB + BC + CA
None of these
OA+OB>AB,OA+OC>AC&OB+OC>BC. 2(OA+OB+OC)>(AB+BC+AC).
In a triangle ABC if a point O is inside the triangle the please prove that AB + BC + CA > AO + BO + CO.
In a triangle ABC if O is any point inside the triangle then prove that AB + BC + CA < 2 (AO + BO + CO ).
In a right angled triangle ∠A is a right-angle and AO is perpendicular to BC at point O, then AO2 = BO×CO .
In △ ABC, if 2(bc cos A + ca cos B + ab cos C) =