If O is a point within triangle ABC, show that,
In ΔABC,
AB+AC>BC ….(i) [∵ Sum of two sides of a triangle is greater than the third side.]
Consider ΔOBC,
OB+OC>BC …(ii)
Subtracting (i) from (ii) we get,
⇒(AB+AC)–(OB+OC)>(BC–BC)
(1) AB+AC>OB+OC
From (1), AB+AC>OB+OC
Similarly, AB+BC>OA+OC
and AC+BC>OA+OB
Adding both sides of these three inequalities, we get,
⇒(AB+AC)+(AB+BC)+(AC+BC)>(OB+OC)+(OA+OC)+(OA+OB)
⇒2(AB+BC+AC)>2(OA+OB+OC)
(2) AB+BC+OA>OA+OB+OC
Again in ΔABC,
⇒OA+OB>AB
⇒OB+OC>BC
⇒OA+OC>AC
On adding the above equations,
⇒2(OA+OB+OC)>AB+BC+CA
Hence,
(3) OA+OB+OC>12(AB+BC+CA)