wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If O is any point inside a rectangle ABCD. Prove that OB2+OD2=OA2+OC2.

Open in App
Solution

Given:RectangleABCDwithcenterOToProve:OB2+OD2=OC2+OA2ThroughO,drawPQBCsothatPliesonABandQliesonDC.Now,PQBCTherefore,PQABandPQDC[B=90andC=90)So,BPQ=90andCQP=90Therefore,BPQCandAPQDarebothrectangles.Now,fromRightangledtriangleOPB,OB2=BP2+OP2...(1)Similarly,fromRightangledtriangleODQ,OD2=OQ2+DQ2...(2)FromOPA,wehaveOA2=AP2+OP2...(3)FromOQCCQ2+OQ2=OC2Adding(1)nd(2)OB2+OD2=BP2+OP2+OQ2+DQ2=CQ2+OP2+OQ2+AP2[AsBP=CQandDQ=AP]=CQ2+OQ2+OP2+AP2=OC2+OA2[From(3)and(4))]HenceProved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Areas of Similar Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon