If O is the centre of the circle, find the value of x in each of the following figures:
(i) A circle with centre O
∠AOC=135∘But ∠AOC+∠COB=180∘ (Linear pair)⇒135∘+∠COB=180∘⇒∠COB=180∘−135∘=45∘Now are BC subtends ∠BOC at the centre and ∠BPC at the remaining part of the circle∴∠BOC=2∠BPC⇒∠BPC=12∠BOC=12×45∘=45∘2∴ ∠BPC=12∠BOC=12∘ or x=2212∘
(ii) ∵ CD and AB are the diameters of the circle with centre O∠ABC=40∘ But in ΔOBC,OB=OC (Radii of the circle)∴∠OCB=∠OBC=40∘Now in ΔBCD,∠ODB+∠OCB+∠CBD=180∘⇒x+40∘+90∘=180∘ (Angles of a triangle)⇒x+130∘=180∘⇒x=180∘−130∘=50∘
(iii) In circle with centre O,∠AOC=120∘,AB is produced to D∵∠AOC=120∘and ∠AOC+convex∠AOC=360∘⇒120∘+convex∠AOC=360∘∴ Convex∠AOC=360∘−120∘=240∘∴ are APC Subtends ∠AOC at the centre and ∠ABC at the remaining part of the circle∴∠ABC=12∠AOC=12×240∘=120∘But ∠ABC at the remainig part of the circle∴∠ABC=12∠AOC=12×240∘=120∘But ∠ABC+∠CBD=180∘(LinearPair)⇒120∘+x=180∘⇒x=180∘−120∘=60∘∴x=60∘
(iv) A circle with centre O and ∠CBD=65∘But∠ABC+∠CBD=180∘(Linearpair)⇒∠ABC+65∘=180∘⇒∠ABC=180∘−65∘=115∘
Now are AEC subtends ∠x at the centre and ∠ABC at the remaining part of the cirle
∴∠AOC=2∠ABC⇒x=2×115∘=230∘∴x=230∘
(v) In circle with centre O AB is chord of the cirlce, ∠OAB=35∘In△OAB,
(OA=OB∴OBA=∠OAB=35∘
But in △OAB
∠OAB+∠OBA+∠AOB=180∘⇒35∘+35∘+∠AOB=180∘⇒70∘+∠AOB=180∘⇒∠AOB=180∘−70∘=110∘∴Convex∠AOB=360∘−110∘=250∘
But are AB subtends ∠AOB at the centre and ∠ACB at the remaining part of the circle
∴∠ACB=152∠AOB⇒x=12×250∘=125∘⇒x=125∘
(vi) IN the circle with centr O, BOC is its diameter, ∠AOB=60∘
Are AB subtends∠AOB at the centre of the circle and ∠ACB at the remaining part of he circle
∴∠ACB=12∠AOB=12×60∘=30∘Butin△OAC,OC=OA∴∠OAC=∠OCA=∠ACB⇒x=30∘
(vii) IN the circle, ∠BACand∠BDC are in the same segment
∠DBC+∠BCD+∠BDC=180∘⇒70∘+x+50∘=180∘⇒x+120∘=180∘⇒x=180∘−120∘=60∘∴x=60∘
(viii) IN circle with centre O,
∠OBD=40∘
AB and CD are diameters of the circle
∠DBAand∠ACD are in the same segment
∴∠ACD=∠DBA=40∘in△OAC,OA=OC∴∠OAC=∠OCA=40∘and∠OAC+∠OCA+∠AOC=180∘⇒40∘+40∘+x=180∘⇒x+80∘=180∘⇒x=180∘−80∘=100∘∴x=100∘
(ix) In the circle, ABCD is a cyclic quadrilatral ∠ADB=32∘,∠DAC=28∘,and∠ABD=50∘,∠ABDand∠ACD are in the same segment of a circle
∴∠ABD=∠ACD⇒∠ACD=50∘Similarly,∠ADB=∠ACB⇒∠ACB=32∘
Now ∠DCB=∠ACD+∠ACB=50∘+32∘=82∘x=82∘
(x) IN a circle,
∠BAC=35∘,∠CBD=65circ∠BACand∠BDC are in the same segment
∴∠BAC=∠BDC=35∘In△BCD,∠BDC+∠BCD+∠CBD=180∘⇒35∘+x+65∘=180∘⇒x+100=180∘⇒x+100∘=180∘⇒x−180∘−100∘=80∘∴x=80∘
(xi) In the circle,
∠ABDand∠ACD are in the same segment of a circle
∴ABD=∠ACD=40∘Nowin△CPD,∠CPD+∠PCD+∠PDC=180∘⇒110∘+40∘+x=180∘⇒x+150∘=180∘∴x=180∘−150∘=30∘
(xii) In the circle, two diameters AC and BD intersect each other at O
∠BAC=50∘OA=OB∴∠OBA=∠OAB=52∘⇒∠ABD=52∘
But ∠ABDand∠ACDare n the same segment of the circle
∴∠ABD=∠ACD⇒52∘=x∴x=52∘