If O is the center of the circle, find the value of x in each of the following figures.
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)
We have to find x in each figure.
(i) It is given that ∠AOC=135∘
∠AOC+∠COB=180∘ [Linear pair]
∠COB=180∘−135∘=45∘
As we know the angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.
Now, x=12∠COB=2212∘
Hence, x=2212∘
(ii) As we know that ∠CAB=∠CDB=x [Angles in the same segment]
line AB is diameter passing through center.
So, ∠BCA=90∘ [Angle inscribed in a semicircle is a right angle]
∠CAB+∠ABC+∠BCA=180∘ [Angle sum property]
⇒x+40∘+90∘=180∘
⇒x=50∘
(iii) It is given that
∠AOC=120∘
∠ABC=12 Reflex ∠AOC
⇒∠ABC=12(360∘−120∘)
So, ∠ABC=120∘
And ∠ABC+∠CBD=180∘
120∘+∠CBD=180∘
Then ∠CBD=60∘
Hence, x=60∘
(iv) ∠DBC=65∘
∠ABC+∠DBC=180∘ (Linear pair)
∠ABC=180∘−65∘=115∘
And
x=2∠ABC
Hence, x=2×115∘=230∘
(v) It is given that ∠OAB=35∘
△AOB is an isosceles triangle.
Therefore, ∠ABO=35∘
And,
In △AOB,∠AOB+∠OBA+∠OAB=180∘
⇒70∘+∠AOB=180∘
⇒∠AOB=110∘
Reflex ∠AOB=2∠ACB
∠ACB=12[360∘−110∘]
∠ACB=125∘
Hence, x=125∘
(vi) It is given that ∠AOB=60∘
And ∠COA+∠AOB=180∘
⇒∠COA=180∘−60∘
⇒∠COA=120∘
△OCA is an isosceles triangle.
So, ∠CAO=12(180∘−120∘)=30∘
Hence, x=30∘
(vii) ∠BAC=∠BDC=50∘ (Angle in the same segment)
In △BDC, we have
∠DBC+∠BDC+∠BCD=180∘
70∘+50∘+∠BCD=180∘
∠BCD=180∘−120∘=60∘
Hence, x=60∘
(viii)
As OD=OB (Radius of the circle)
Therefore, △DOB is an isosceles triangle.
∠ODB+∠OBD+∠DOB=180∘
40∘+40∘+∠DOB=180∘
∠DOB=180∘−80∘=100∘
So, ∠AOC=∠DOB (Vertically opposite angles)
Hence, x=100∘
(ix) It is given that ∠ABD=50∘
∠DCA=∠ABD=50∘ …… (1) (Angle in the same segment)
∠ADB=∠ACB=32∘ ......(2) (Angle in the same segment)
Because ∠DCA and ∠ABD are on the same segment AD of the circle.
Now from equations (1) and (2), we have
∠DCB=50∘+32∘=82∘
Hence, ∠DCB=x=82∘
(x) It is given that ∠A=35∘
∠BAC=∠BDC=35∘ (Angle in the same segment)
Now in △BDC, we have
∠BDC+∠DCB+∠CBD=180∘
⇒35∘+65∘+∠CBD=180∘
⇒∠CBD=180∘−100∘=80∘
Hence, x=80∘
(xi)
∠ABC=∠ACD=40∘ (Angle in the same segment)
In △PCD, we have
∠CPD+∠PCD+∠PDC=180∘
40∘+110∘+∠PDC=180∘
∠PDC=180∘−150∘=30∘
Hence, x=30∘
(xii)
∠BAO=∠CDO=52∘ (Angle in the same segment)
△DOC is an isosceles triangle
So, OD=OC (Radius of the same circle)
Then ∠ODC=∠OCD=52∘
Hence, x=52∘