If OA and OB are two equal chords of the circle x2+y2−2x+4y=0 perpendicular to each other and passing through the origin, the slopes of OA and OB are the roots of the equation.
A
3m2+8m−3=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3m2−8m−3=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
8m2+3m−8=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
8m2+3m+8=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B3m2−8m−3=0 x2+y2−2x+4y=0centre(1,−2)OC=√12+(−2)2=√5OA⊥OB⇒OA=OB[given]InΔAOBOA2+OB2=AB2OA2+OA2=(2r)22OA2=4r22OA2=20√OA2=√10OA=√10equationofOB=y=mx&equationofOA=y=−xmOM=MB=OB=√102InΔBOM,CM2=BC2−BM2CM2=51−104CM2=104⇒52Accordingto⊥distanceformula⇒CM=∣∣∣m+2√m2+1∣∣∣Cm(m+2)2m2+1⇒m2+4m+4m2+1=522m2+8m+8=5m2+5⇒3m2−8m−3=0m=3,−13putm=3equationofOB⇒y=mx⇒y=3xforOA⇒y=−x3m=13equationofOBy=mx⇒y=−x3forOAy=−x3