The correct options are
A z=−2
D z=1
Since w is the cube root of unity.
∴w3=1&1+w+w2=0,
where, w=−1+i√32&w2=−1−i√32.
w&w2 are the two vertices of equilateral triangle.
Let z=x+iy be third vertex.
∴|z−w|=∣∣z−w2∣∣=∣∣w−w2∣∣=∣∣∣−1+i√32−−1−i√32∣∣∣=√3
⇒∣∣
∣∣x+12+i(y−√32)∣∣
∣∣=∣∣
∣∣x+12+i(y+√32)∣∣
∣∣⇒(x+12)2+(y−√32)2=(x+12)2+(y+√32)2⇒y=0
And, |z−w|=√3⇒∣∣
∣∣x+12+i(y−√32)∣∣
∣∣=√3⇒(x+12)2+(y−√32)2=3⇒(x+12)2=94⇒x=1,−2
∴z=1,−2
Hence, option A and C are correct.