If ω = −1+i√32 , then Z1 = −√3−i2 and Z2 = √3−i2 can be expressed in terms of ω and ω2 as
-i , i
i , - i
i , i
-i , -i
ω is a cube root of unity . Then ω2 = −1−i√32 Z1 = −√3−i2 = i −1+i√32 = iω Z2 = √3−i2 = i (−1−i√3)2 = iω2
If ω is imaginary cube root of unity, then arg(i ω) + arg(i ω2) =