If ω is a cube root of unity.Find (1−ω)(1−ω2)(1−ω4)(1−ω8)
Open in App
Solution
If ω is a complex cube root of unity, then ω3=1 and 1+ω+ω2=0. now, z=(1−ω)(1−ω2)(1−ω4)(1−ω8) ⇒z=(1−ω)(1−ω2)(1−ω)(1−ω8) ⇒z=(1−ω)2(1−ω2)2 ⇒z=(1−2ω+ω2)(1−2ω2+ω4) ⇒z=(1−2ω+ω2)(1−2ω2+ω) ⇒z=(−3ω)(−3ω2)=9ω3=9 Ans: 9