If ω is a non-real cube root of unity, then the value of (1−ω+ω2)5+(1+ω−ω2)5 is
(1−ω+ω2)5+(1+ω−ω2)5=(−ω−ω)5+(−ω2−ω2)5=−25ω5−25ω5−25(ω5+ω10)=−32(ω2+ω)=−32⋅−1=32