1,ω,ω2,ω3,.....,ωn−1 are the n, nth roots of unity then
n−1∑k=0ωk=0 and n−1∑k=0(¯¯¯ω)k=0
L.H.S. n−1∑k=0|z1+ωkz2|2=n−1∑k=0(z1+ωkz2)(¯¯¯¯¯z1+(¯¯¯ω)k¯¯¯¯¯z2)
=n−1∑k=0z1¯¯¯¯¯z1+z1¯¯¯¯¯z2(¯¯¯ω)k+¯¯¯¯¯z1z2ωk+z2¯¯¯¯¯z2(ωk)(¯¯¯ω)k
n−1∑k=0|z1|2+n−1∑k=0z1¯¯¯¯¯z2(¯¯¯ω)k+n−1∑k=0¯¯¯¯¯z1z2ωk+n−1∑k=0|z1|2
=n|z1|2+0+0+n|z2|2
=n{|z1|2+|z2|2}
=R.H.S