The correct option is A 0
△=∣∣
∣
∣∣x+ω2ω1ωω21+x1x+ωω2∣∣
∣
∣∣=0,
C1→C1+C2+C3
△=∣∣
∣
∣∣x+ω2+ω+1ω1x+ω2+ω+1ω21+xx+ω2+ω+1x+ωω2∣∣
∣
∣∣=0,
△=(x+ω2+ω+1)∣∣
∣
∣∣1ω11ω21+x1x+ωω2∣∣
∣
∣∣=0,
∵ω2+ω+1=0
△=x[1(ω4−(1+x)(x+ω))−ω(ω2−1−x)+1(x+ω−ω2)]=0
⇒x[x2−2ω+1+ω2]=0
⇒x=0, x2=3ω