The correct options are
A x2y+2=0
B xy+2=0
D x2+xy−y−1=0
Given parabola is y2=4ax (where a=1)
We know coordinates of end point of any focal chords are P(at2,2at) and Q(at2,−2at)
Now let P=(1,2) so corresponding t=1
So other end of the focal chord is Q(1,−2)
Clearly point Q lies on the curves in options ′A′,′B′,′D′.