The correct option is C 2x + 2y = 5
Given one end of the diameter is (1,1)and the other end is x+y=3
⇒y=3−x
Thus, the parametric form of other end is (t,3−t), when x=t
So the equation of the variable circle is
(x−x1)(x−x2)+(y−y1)(y−y2)=0; where (x1,y1)=(1,1) and (x2,y2)=(t,3−t)
⇒(x−1)(x−t)+(y−1)(y−3+t)=0
⇒x2−tx−x+t+y2−y(3−t)−y+3−t
or x2+y2−(1+t)x−(4−t)y+3=0
∴ The centre (α,β) is given by
α=1+t2,β=4−t2
⇒2α=1+t,2β=4−t
Adding 2α and 2β, we get
⇒ 2α+2β=1+t+4−t
⇒ 2α+2β=5
Hence, the locus is 2x+2y=5.