The correct options are
A x2y+2=0
B xy+2=0
D x2+xy−y−1=0
For y2=4x
a=1 then (1,2)≡(t21,2t1)
By comparing, we get,
t1=1
for second end point (t22,2t2)
and
t1t1=−1⇒t2=−1
So, second end point will be (1,−2)
Now checking options
12×(−2)+2=0 , satisfied
1×(−2)+2=0 , satisfied
1×(−2)−2=−4≠0 , Not satisfied
12+1×(−2)−(−2)−1=0 , satisfied