If one G.M. G and two geometric means p and q be inserted between any two given numbers, then G2=(2p−q)(2q−p).
Let the given two numbers be a,b
G2=pq .............(1)
Since,
a,p,q,b are in A.P
b=a+3d
⇒d=b−a3
Now,
p=a+d=a+b−a3=2a+b3
q=p+d=2a+b3+b−a3=a+2b3
Now,
2p−q=3a3=a .............(2)
p−2q=−b ...............(3)
Therefore,
(2p−q)(p−2q)=−ab
(2p−q)(p−2q)=−G2
G2=(2p−q)(2q−p)
Hence, this is the answer.