Question 27
If one of the angle of a triangle is 110∘, then the angle between the bisectors of the other two angles is
a) 70∘
b) 110∘
c) 35∘
d) 145∘
In ΔABC,∠A=110∘
We know, that ∠A+∠B+∠C=180∘ [angle sum property of a triangle]
⇒∠B+∠C=180∘−∠A⇒∠B+∠C=180∘−110∘⇒∠B+∠C=70∘……(i)
⇒12∠B+12∠C=702=35∘ [∵ Eq. (i) is divided by 2]
⇒12(∠B+∠C)=35∘
Now, in ΔBOC
∠BOC+∠OBC+∠OCB=180∘ [angle sum property of a triangle] .... (ii)
⇒∠BOC+12(∠B+∠C)=180∘
[∵ OB and OC are the bisectors of ∠B and ∠C, then ∠OBC=12∠B and ∠OCB=12∠C]
⇒∠BOC+35∘=180∘⇒∠BOC=180∘−35∘⇒∠BOC=145∘