Question 5 If one of the angles of a triangle is 130∘, then the angle between the bisectors of the other two angles can be:
A) 50∘ B) 65∘ C) 145∘ D) 155∘
Open in App
Solution
The answer is D. Let angles of a triangle be ∠A,∠Band∠C.
InΔABC, ∠A+∠B+∠C=180∘ [Sum of all interior angles of a triangle is 180∘] ⇒12∠A+12∠B+12∠C=180∘2=90∘ [dividing both sides by 2] ⇒12∠B+12∠C=90∘−12∠A ⇒[∵inΔOBC,∠OBC+∠BCO+∠COB=180∘] [Since,∠B2+∠C2+∠BOC=180∘asBOandOCaretheanglebisectorsof∠ABCand∠BCArespectively] ⇒180∘−∠BOC=90∘−12∠A ∴∠BOC=180∘−90∘+12∠A=90∘+12∠A =90∘+12×130∘=90∘+65∘[∵∠A=130∘(given)] =155∘ Hence, the required angle is 155∘.