If one of the angles of a triangle is 130∘ then the angle between the bisectors of the other two angles can be
(a) 50∘
(b) 65∘
(c) 90∘
(d) 155∘
ANSWER:
Let △ABCbesuchthat∠A=130∘
Here, BP is the bisector of ∠BandCPisthebisectorof∠C.
∴ ∠ABP=∠PBC=1/2∠B
.....(1)
Also, ∠ACP=∠PCB=1/2∠C
.....(2)
In △ABC,
∠A+∠B+∠C=180∘
(Angle sum property)
⇒ 130∘+∠B+∠C=180∘
⇒ ∠B+∠C=180∘−130∘=50∘
⇒ 1/2 ∠B+1/2∠C=1/2×50∘=25∘
⇒ ∠PBC+∠PCB=25∘
.....(3)
[Using (1) and (2)]
In △PBC,
∠PBC+∠PCB+∠BPC=180∘
⇒25∘+∠BPC=180∘
(Angle sum property)
[Using (3)]
⇒ ∠BPC=180∘−25∘=155∘
Thus, if one of the angles of a triangle is 130∘thentheanglebetweenthebisectorsoftheothertwoanglesis155∘.
Hence, the correct answer is option (d).