Let A=⎡⎢⎣a1b1c1a2b2c2a3b3c3⎤⎥⎦
|A|=a1b2c3−a1b3c2−b1a2c3+b1c2a3+a1a2a3−c1a3b2
Now, A−λI=⎡⎢⎣a1−λb1c1a2b2−λc2a3b3c3−λ⎤⎥⎦
⇒det(A−λI)=(a1−λ)[(b2−λ)(c3−λ)−b3c2]−b1[a2(c3−λ)−c2a3]+c1[a2b3−a3(b2−λ)]
Now if one of the eigen values is zero, one root of λ should be zero.
Therefore, constant term in the above polynomial is zero.
⇒a1b2c3−a1b3c2−b1a2c3+b1c2a3+a1a2a3−c1a3b2=0
⇒detA=0