Let px=x3+ax2+bx+c. Now, −1 is a zero of the polynomial. So, p(−1) = 0. ⇒-13+a-12+b-1+c=0⇒-1+a-b+c=0⇒a-b+c=1⇒c=1-a+b Now, if α, β, γ are the zeroes of the cubic polynomial ax3+bx2+cx+d, then product of zeroes is given by αβγ=-da So, for the given polynomial, px=x3+ax2+bx+c αβ-1=-c1=-1-a+b1⇒αβ=1-a+b
Hence, the correct answer is option A.