wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If one of the zeros of the cubic polynomial ax3+bx2+cx+d is 0 then the product of the other two zeros is

(a) ca (b) ca (c) 0 (d) ba

Open in App
Solution

Given that, 0 is the zero of polynomial

p open parentheses x close parentheses equals a x cubed plus b x squared plus c x plus d g i v e n p open parentheses 0 close parentheses equals 0 p open parentheses 0 close parentheses equals a open parentheses 0 close parentheses cubed plus b open parentheses 0 close parentheses squared plus c open parentheses 0 close parentheses plus d equals 0 d equals 0

∴ p (x) reduces to –

p open parentheses x close parentheses equals a x cubed plus b x squared plus c x equals x open parentheses a x squared plus b x plus c close parentheses

To find the zeros,

Put, p(x) = 0

x open parentheses a x squared plus b x plus c close parenthesesx equals 0 space o r space a x squared plus b x plus c equals 0 minus negative negative negative negative open parentheses 1 close parentheses

Let α, β be the other zeros of p(x)

Then from (1), product of zeros is given by –

alpha beta equals c over a
option b is correct


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relationship between Zeroes and Coefficients of a Polynomial
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon