Consider the given equation, ax2−2ibx+ic=0
Let the roots of this equation are t and t2,(given that one root is the square of another ).
Now,
t×t2=ica
t3=ica ……..(1)
t+t2=−−2iba
t+t2=2iba ……….(2)
Taking cube both sides of equation (2), we get
(t+t2)3=(2iba)3
t3+(t2)3+3t2.t2+3t.(t2)2=8.i3.b3a3=8.i2.i.b3a3
t3+t6+3t4+3t5=8.(−1).i.b3a3(∵i2=−1)
t3+t6+3t4+3t5=−8i.b3a3
From equation (1),
⎛⎜ ⎜⎝(ica)13⎞⎟ ⎟⎠3+⎛⎜ ⎜⎝(ica)13⎞⎟ ⎟⎠6+3⎛⎜ ⎜⎝(ica)13⎞⎟ ⎟⎠4+3⎛⎜ ⎜⎝(ica)13⎞⎟ ⎟⎠5=−8i.b3a3
ica+(ica)2+3(ica)43+3(ica)53=−8ib3a3
ica+i2c2a2+3(i4)13c43a43+3(i4i)53c53a53=−8ib3a3
ica−c2a2+3c43a43+3(i)53c53a53=−8ib3a3(∵i3=−1)
ica−c2a2+3c43a43+3(i)53c53a53−−8ib3a3=0
i=ac2−6abc8b3−a2c.
Hence, this is the answer.