If one root of the equation ax2+bx+c=0 be n times the other root, then
na2=ac(n+1)2
Given: One root of the equation ax2+bx+c=0 be n times the other root.
Let the roots are α and nα
Using, sum of roots
α+nα=−ba⇒α=−ba(n+1) ....(i)
and product,
α.nα=ca⇒α2=cna ....(ii)
From (i) and (ii), we get
⇒[−ba(n+1)]2=cna⇒b2a2(n+1)2=cna
⇒nb2=ac(n+1)2