If one root of the quadratic equation ax2+bx+c=0 is equal to the nth power of the other root, then the value of (acn)1n+1 + (anc)1n+1
-b
Let α, αn be two roots,
Then α+αn=−ba⋯(i),α×αn=ca
⇒αn+1=ca⇒α=(ca)1n+1⋯(ii)
Substituting (ii) in (i), we get:
(ca)1n+1+(ca)nn+1=−ba
⇒a⋅(a)−1n+1⋅(c)1n+1+(a.a)−nn+1⋅cnn+1=−b
⇒(anc)1n+1 + (acn)1n+1=−b