If one root of the quadratic equation ax2+bx+c=0 is equal to the nth power of the other root. Then the value of (acn)1n+1+(anc)1n+1
−b
Let α,αn be the two roots of ax2+bx+c=0.
Then α+αn=−ba,
and α.αn=ca⇒α=(ca)1n+1
Eliminating α, we get (ca)1n+1+(ca)nn+1=−ba
⇒(anc)1n+1+(acn)1n+1=−b