If one root of the quadratic equation ax2+bx+c=0 is equal to the nth power of the other root, then the value of (acn)1n+1+(anc)1n+1=
Let α,αn be the two roots.
Then α+αn=−ba,α αn=ca
Eliminating α, we get (ca)1n+1+(ca)nn+1=−ba
⇒ a.1an+1.1Cn+1+a.nan+1.ncn+1=−bor (anc)1n+1+(acn)1n+1=−b