The correct option is A 2±√5
Let α and α2 be the roots of x2−x−k=0. Then,
α+α2=1……(1)
and α3=−k⇒α=−k1/3
Substituting in (1) we have
(−k)1/3+(−k)2/3=1
or (k2/3−k1/3)=1
Taking cube on both sides, we get
k2−k−3k(k2/3−k1/3)=1
k2−k−3k(1)=1
k2−4k−1=0
⇒k=2±√5
Hence, option 'A' is correct.