The correct option is D −12
Let one zero be ′a′, so other zero will be ′7a′.
Given, f(x) = 3x2−8x+2k+1
f(a)=0
⇒3a2−8a+2k+1=0…(i)
f(7a)=0
147a2−56a+2k+1=0…(ii)
Subtract Eq(i) from Eq (ii),
147a2−56a+2k+1=0 −3a2∓ 8a±2k±1=0––––––––––––––––––––––––––––144a2 − 48a=0
⇒48a(3a−1)=0
∴a=0 and a=13
If we put a=0, then
f(a)=3×02−8×0+2k+1
=2k+1
⇒2k+1=0
⇒k=−12
If a=13
Nowf(13)=0
3×132−83+2k+1=013−83+1+2k=0−73+1+2k=0−43+2k=02k=43∴k=23