The correct option is
A 4OT2+ON2=a2Given equation of curve is
x=asin3t,y=acos3t
dxdt=3asin2tcost
dydt=−3acos2tsint
⇒dydx=−cott
Slope of tangent to curve at t is −cott
Equation of tangent at t is
y−acos3t=−cott(x−asin3t)
⇒−xcott−y+acos3t+acostsin2t=0
Now, OT=∣∣
∣∣acos3t+acostsin2t√1+cot2t∣∣
∣∣
⇒OT=|acostsin3t+acos3tsint|
⇒OT2=a2sin2tcos2t(sin2t+cos2t)2
⇒4OT2=4a2sin2tcos2t ......(1)
Now, slope of normal to curve at t is tant
Equation of normal at t is
y−acos3t=tant(x−asin3t)
⇒xtant−y+acos3t−atantsin3t=0
Now, ON=∣∣
∣∣acos3t−atantsin3t√1+tan2t∣∣
∣∣
⇒ON=|acos4t−asin4t|
⇒ON2=a2(cos4t−sin4t)2
⇒ON2=a2(cos2t−sin2t)2
⇒ON2=a2(cos2t+sin2t)2−4a2sin2tcos2t
⇒ON2=a2−4a2sin2tcos2t .....(2)
Adding (1) and (2), we get
4OT2+ON2=a2
Hence, option A.