If ¯¯¯a=2¯i+¯¯¯k,¯¯b=¯i+¯j+¯¯¯k,¯¯c=4¯i−3¯j+7¯¯¯k, then the vector ¯¯¯r satisfying ¯¯¯rׯ¯b=¯¯cׯ¯b and ¯¯¯r.¯¯¯a=0 is
A
¯i+8¯j+2¯¯¯k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
¯i−8¯j+2¯¯¯k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
¯i−8¯j−2¯¯¯k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−¯i−8¯j+2¯¯¯k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D−¯i−8¯j+2¯¯¯k ¯¯¯rׯ¯b=¯¯cׯ¯b ¯¯¯rׯ¯b−¯¯cׯ¯b=¯¯¯0 (¯¯¯r−¯¯c)ׯ¯b=¯¯¯0 ∴(¯¯¯r−¯¯c)∥¯¯b Thus ¯¯¯r−¯¯c=t¯¯b ¯¯¯r=¯¯c+t¯¯b Now ¯¯¯r⋅¯¯¯a=¯¯c.¯¯¯a+t(¯¯b.¯¯¯a)=0 −(¯¯c.¯¯¯a)¯¯b.¯¯¯a=t