If ¯¯¯a=^i+^j−2^k,¯¯b=2^i−^j+^k and ¯¯c=3^i+^k and ¯¯c=m¯¯¯a+n¯¯b then m + n =
We have,
→a=ˆi+ˆj−2ˆk
→b=2ˆi−ˆj+ˆk
→c=3ˆi+ˆk
And →c=m→a+n→b
Then,
From this equation,
→c=m→a+n→b
3ˆi+ˆk=m(ˆi+ˆj−2ˆk)+n(2ˆi−ˆj+ˆk)
⇒3ˆi+ˆk=mˆi+mˆj−2mˆk+2nˆi−nˆj+nˆk
⇒3ˆi+ˆk=mˆi+2nˆi+mˆj−nˆj−2mˆk+nˆk
⇒3ˆi+0ˆj+ˆk=(m+2n)ˆi+(m−n)ˆj−(2m+n)ˆk
On comparing that,
m+2n=3......(1)
m−n=0......(2)
2m+n=−1......(3)
From equation (1) and (2) to, and we get,
m=n=1
So,
m+n=1+1=2
Hence, this is the answer.