If ¯¯¯a,¯¯b,¯¯c are the position vectors of the points A,B,C respectively and 2¯¯¯a+3¯¯b−5¯¯c=¯¯¯0, then find the ratio in which the point C divides line segment AB.
Open in App
Solution
Let the ratio be λ:1 Position vector of point (C) →c=λ→a+→bλ+1 Put the value of →c in 2→a+3→b−5→c=0 2→a+3→b−5×(λ→a+→bλ+1)=0 ⇒(λ+1)(2→a+3→b)−5λ→a−5→b(λ+1)=0 ⇒2→aλ+3→bλ+2→a+3→b−5λ→a−5→b=0 ⇒3→bλ−3→aλ+2→a−2→b=0 ⇒3λ(→b−→a)=2→b−2→a ⇒3λ=2(→b−→a)(→b−→a)⇒λ1=32 hence the point C divides line segment AB in the ratio 2:3.