If ¯¯¯a=¯i+2¯j,¯¯b=−2¯i+¯j,¯¯c=4¯i+3¯j, find x and y such that ¯¯c=x¯¯¯a+y¯¯b.
Open in App
Solution
Given, ¯¯c=x¯¯¯a+y¯¯b 4¯i+3¯j=x(¯i+2¯j)+y(−2¯i+¯j) 4¯i+3¯j=(x−2y)¯i+(2x+y)¯j Comparing both the sides, we get x−2y=4 and 2x+y=3 Solving the equations, we get x=2 and y=−1