wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If ¯¯¯rׯ¯b=¯¯cׯ¯b.¯¯¯r.¯¯¯a=0,¯¯¯a=2¯i+3¯j¯¯¯k,¯¯b=3¯i¯j+¯¯¯k,¯¯c=¯i+¯j+3¯¯¯k, then ¯¯¯r=

A
12(¯i+¯j+¯¯¯k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2(¯i+¯j+¯¯¯k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2(¯i+¯j+¯¯¯k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
12(¯i¯j+¯¯¯k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 2(¯i+¯j+¯¯¯k)
r×b=c×b
(rc)×b=0
rc is parallel to brc=λb
Now, ra=0
(c+λb)a=0
ac+λba=0
λ=(ac)ab
=(2+33)631=22=1
r=cb
=2^i+2^j+2^k=2(i+j+k)
(C).

1131059_1208480_ans_4854bfe6a5e44ab69a23aa2498fa3d83.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Section Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon