¯¯¯z=¯¯¯z0+A(z−z0)
Az−¯¯¯z−Az0+¯¯¯z0=0 (1)
¯¯¯¯A¯¯¯z−z−¯¯¯¯A¯¯¯z0+z0=0 (2)
Adding (1) and (2), we get
(A−1)z+(¯¯¯¯A−1)¯¯¯z−(Az0+¯¯¯¯A¯¯¯z0)+z0+¯¯¯z0=0
This is of the form ¯¯¯az+a¯¯¯z+b=0, where a=¯¯¯¯A−1 and b=−(Az0+¯¯¯¯A¯¯¯z0)+z0+¯¯¯z0∈R.
Hence, locus of z is a straight line.
Ans: 1